Wako 125-05061 赖氨酰肽链内切酶使用说明书

Wako 125-05061 赖氨酰肽链内切酶使用说明书

质谱级赖氨酰肽链内切酶 Lysyl Endopeptidase

【产品详情】
赖氨酰肽链内切酶
品牌:WAKO 和光
级别:质谱级
赖氨酰肽链内切酶Lysyl Endopeptidase 125-05061 wako
英文品名:Lysyl Endopeptidase?, Mass Spectrometry Grade
货号:125-05061
规格:5×20 μg
应用:蛋白质组学。
用途:赖氨酰肽链内切酶,蛋白测序、质谱分析,多肽合成
赖氨酰肽链内切酶Lysyl Endopeptidase 125-05061 wako

实验方法

1. 试剂:

A.0.2 mol/L AMP 缓冲液,pH值 9.5

溶解 4.2 g 的2-氨基-2-甲基-1,3-丙二醇于 150 mL 的水中,加入1 mol/L HCl 调 pH 值至 9.5,再加水使体积至 200 mL。

B.2.5 mmol/L 底物溶液

溶解 22.6 mg 的N-苯甲酰基-DL-精氨酰-4-硝基苯胺盐酸盐于 20 mL 水中。

C.   2 mmol/L Tris-HCl 缓冲液,pH8

溶解 0.24 mg的2-氨基-2-羟甲基-1,3-丙二醇于 900 mL 水中,加入 0.1 mol/L HCl 调pH值至8,再加水使体积至1 L。

D.   酶溶液

溶解1vial 的赖氨酰肽链内切酶于1mL 的溶剂C中,可直接加入。

E. 终止溶液

将 55 mL 水和 45 mL 乙酸混合均匀。

2. 步骤

试剂 检测样品 空白对照
A 2.6 mL 2.6 mL
B 0.3 mL 0.3 mL
30℃ 预培养5分钟
D 0.1 mL
C 0.1 mL
立即混合均匀,30℃ 预培养25分钟
E 1.0 mL 1.0 mL

 

3. 单位的定义

酰胺酶单位是指 30℃、pH 9.5 时,每分钟产生1μmol 对硝基苯胺的酶量。

AU/vial = [(a-b) / 25] × (1/9.62) × (4.0/0.1)

a.    检测样品中的吸光度

b.    空白对照中的吸光度

胶内酶切的实验操作流程

用聚硅酮处理的微量离心管和吸管端防止捕获任何蛋白。使用质谱分析用凝胶染色试剂盒,例如银染剂 MS 试剂盒(产品编号:299-58901)和负凝胶染色 MS 试剂盒(产品编号:293-57701)

1.    电泳分离蛋白质样品;

2.    从凝胶中切割蛋白质片断并放入微量离心管;

3.    使凝胶脱色(可使用质谱分析用凝胶染色试剂盒中的脱色溶液);

4.    加入300 μL 乙腈到试管里,搅拌器振荡 30 分钟;

5.    去除乙腈,用 Parafilm 膜覆盖微量离心管。

6.    在 Parafilm 膜上打出针孔,真空干燥 15 分钟;

7.    100 μL 10 mmol/L DTT 溶解于 100 mmol/L 碳酸氢铵,56℃恒温1小时。

8.    室温冷却后,用等量的 50 mM 碘乙酰胺溶解于 100 mmol/L 碳酸氢铵,暗处恒温 45 分钟并涡旋;

9.    用 100 μL 100 mmol/L 碳酸氢铵洗涤凝胶片段 10 分钟;

10.  用 300 μL 乙腈干燥凝胶片段 15 分钟;

11.  用 100 μL 100 mmol/L 碳酸氢铵溶胀凝胶片段 15 分钟;

12.  用 300 μL 乙腈再次干燥凝胶片段 15 分钟;

13.  去除液相,真空干燥凝胶片段 15 分钟;

14.  用 100 μL 赖氨酸内切酶溶液*在冰水浴中溶胀凝胶片段 45 分钟;

*赖氨酸内切酶稀释于 50 mmol/L Tris-HCl  pH 8.5;

15.  去除 100 μL 赖氨酸内切酶溶液,将凝胶片段放在 37℃、10 μL 50 mmol/L Tris-HCl pH 8.5 中过夜;

16.  加入 50 μL 20mmol/L 碳酸氢铵 20 分钟内振荡凝胶片段3次抽提多肽;

17.  加入 5% 甲酸/50% 乙腈 20 分钟内振荡凝胶片段3次抽提多肽;

18.  如果需要用 Speed Vac. 浓缩多肽;

19.  用 ZipTip 脱盐和纯化多肽;

20.  如果需要用弱真空浓缩多肽至2 μL;

21.  加入基质进行质谱分析。

注意:根据细菌的生理和形态特征分类,产品来源为水解无色杆菌,但是最近细菌分类学将这种细菌鉴定为产酶溶杆菌。

保存:暗处-20℃保存

规格:20 μg×5 vial

Wako 125-05061 赖氨酰肽链内切酶使用说明书   参考文献

[1]   Ojima T et al. “Characterization of Halomonas Sp. Strain H11 {alpha}-Glucosidase Activated by Monovalent Cations and Its Application for Efficient Synthesis of {alpha}-D-Glucosylglycerol.” Applied and Environmental Microbiology 78, no. 6 (March 15, 2012): 1836–1845.

[2]   Leitner A et al. “Expanding the Chemical Cross-Linking Toolbox by the Use of Multiple Proteases and Enrichment by Size Exclusion Chromatography.”Molecular and Cellular Proteomics 11, no. 3 (March 1, 2012): M111.014126.

[3]   Goetze A et al. “Rates and Impact of Human Antibody Glycation in Vivo.” Glycobiology 22, no. 2 (February 1, 2012): 221–234.

[4]   Thingholm, T et al. “Characterization of Human Myotubes From Type 2 Diabetic and Nondiabetic Subjects Using Complementary Quantitative Mass Spectrometric Methods.” Molecular and Cellular Proteomics 10, no. 9 (September 1, 2011): M110.006650.

[5]    Shoji M et al. “walK and clpP Mutations Confer Reduced Vancomycin Susceptibility in Staphylococcus Aureus.” Antimicrobial Agents and Chemotherapy 55, no. 8 (August 1, 2011): 3870–3881.

[6]    Kubota T et al. “Quantitative Proteomic Analysis of Chromatin Reveals That Ctf18 Acts in the DNA Replication Checkpoint.”Molecular and Cellular Proteomics 10, no. 7 (July 1, 2011): M110.005561.

[7]   Lee E et al. “The Steady-State Repertoire of Human SCF Ubiquitin Ligase Complexes Does Not Require Ongoing Nedd8 Conjugation.” Molecular and Cellular Proteomics 10, no. 5 (May 1, 2011): M110.006460.

[8]    Shirai Y et al. “Direct Binding of RalA to PKC{eta} and Its Crucial Role in Morphological Change During Keratinocyte Differentiation.” Molecular Biology of the Cell 22, no. 8 (April 15, 2011): 1340–1352.

[9]    Liu D et al. “N-terminal Glutamate to Pyroglutamate Conversion in Vivo for Human IgG2 Antibodies.” Journal of Biological Chemistry 286, no. 13 (April 1, 2011): 11211–11217.

[10]    Shen H et al. “Constitutive Activated Cdc42-associated Kinase (Ack) Phosphorylation at Arrested Endocytic Clathrin-coated Pits  of Cells That Lack Dynamin.” Molecular Biology of the Cell 22, no. 4 (February 15, 2011): 493–502.

[11]    Keinath N et al. “PAMP (Pathogen-associated Molecular Pattern)-induced Changes in Plasma Membrane Compartmentalization Reveal Novel Components of Plant Immunity.” Journal of Biological Chemistry 285, no. 50 (December 10, 2010): 39140–39149.

[12]    Maeda T et al. “Purification, Characterization and Amino Acid Sequence of a Novel Enzyme, D-threo-3-hydroxyaspartate Dehydratase, from Delftia Sp. HT23.” Journal of Biochemistry 148, no. 6 (December 1, 2010): 705–712.

[13]   Rajagopal C et al. “Secretion Stimulates Intramembrane Proteolysis of a Secretory Granule Membrane Enzyme.” Journal of Biological Chemistry 285, no. 45 (November 5, 2010): 34632–34642.

[14]    Sato H et al.“Novel Isonitrile Hydratase Involved in Isonitrile Metabolism.”Journal of Biological Chemistry 285, no. 45 (November 5, 2010): 34793–34802.

[15]    Manno S et al. “ATP-dependent Mechanism Protects Spectrin Against Glycation in Human Erythrocytes.” Journal of Biological Chemistry 285, no. 44 (October 29, 2010): 33923–33929.

[16]    Matsumoto T et al. “Proteomic Analysis Identifies Insulin-like Growth Factor-binding Protein-related Protein-1 as a Podocyte Product.” Renal Physiology 299, no. 4 (October 1, 2010): F776–784.

[17]    Sury M et al. “The SILAC Fly Allows for Accurate Protein Quantification in Vivo.” Molecular and Cellular Proteomics 9, no. 10 (October 1, 2010): 2173–2183.

产品编号 产品名称 产品规格 产品等级
125-05061 Lysyl Endopeptidase®, MS Grade
赖氨酰肽链内切酶,MS级
20 μg×5 质谱级

相关产品

产品编号 产品名称 包装 应用
202-15951 Trypsin, from Porcine Pancreas,

Mass Spectrometry Grade

猪胰腺胰蛋白酶质谱级别

5×20 μg 蛋白质组学
056-05921 Endoproteinase Asp-N, Sequencing grade
胞内蛋白酶 Asp-N(测序级别)
2 μg 用于测序
050-05941 Endoproteinase Glu-C, Sequencing grade
胞内蛋白酶 Glu-C(测序级别)
50 μg
164-13982 V8 Protease [Endoproteinase Glu-C]
V8蛋白酶
2 mg 生物化学